

LCD TFT Datasheet

Rev.1.3 2015-06-12

ITEM	CONTENTS	UNIT
LCD Type	TFT/Transmissive/Normally white	/
Size	3.5	Inch
Viewing Direction	12:00 (without image inversion)	O' Clock
Gray Scale Inversion Direction	6:00	O' Clock
LCM (W × H × D)	76.90 x 63.90 x 7.95	mm³
Active Area (W × H)	70.08 × 52.56	mm ²
Dot Pitch (W × H)	0.73 × 0.219	mm ²
Number Of Dots	320 (RGB) × 240	/
Controller IC	FT801	/
Backlight Type	6 LEDs	/
Surface Luminance	480	cd/m²
Interface Type	SPI/I2C	/
Color Depth	262k	/
Pixel Arrangement	RGB Vertical Stripe	/
Surface Treatment	Clear	1
Input Voltage	3.3	V
With/Without TSP	Projected Capacitive Touch Panel	1
Weight	56	g

Note 1: RoHS compliant

Note 2: LCM weight tolerance: ± 5%.

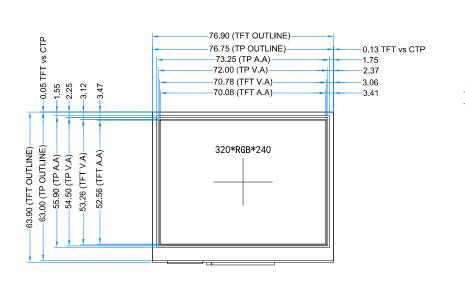
LCD TFT Datasheet Rev.1.3 RVT3.5B320240CNWC81

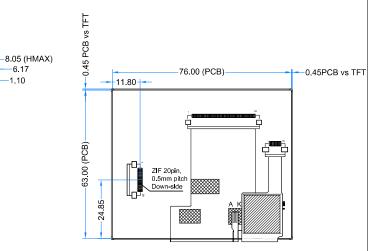
REVISION RECORD

REVNO.	REVDATE	CONTENTS	REMARKS
1.0	2014-10-27	Initial Release	
1.1	2015-01-07	Update surface luminance, update LED lifetime, update response time, update absolute maximum supply voltage	
1.2	2015-02-24	Update mode select information, thickness, update Touch Panel Ink View Area dimensions	
1.3	2014-10-27	Update surface treatment	

CONTENTS

REVI:	SION	N RECORD
CON	TEN	TS2
1.	MOI	DULE CLASSIFICATION INFORMATION
2.	MOI	DULE DRAWING4
3.	ABS	OLUTE MAXIMUM RATINGS 5
4.	ELEC	CTRICAL CHARACTERISTICS
5.	ELEC	CTRO-OPTICAL CHARACTERISTICS
6.	INTE	ERFACE DESCRIPTION
7.	FT80	01 CONTROLLER SPECIFICATIONS
7.2	1.	Serial host interface
7.2	2.	Block Diagram9
7.3	3.	Host interface SPI mode 0
7.4	4.	Backlight driver block diagram
8.	LCD	TIMING CHARACTERISTICS
8.2	1.	Timing Chart
8.2	2.	24 Bit RGB Mode for 320 x RGB x 240
9.	CAP	ACITIVE TOUCH SCREEN PANEL SPECIFICATIONS
9.2	1.	Mechanical characteristics
9.2	2.	Electrical characteristics
10.	RI	ELIABILITY TEST
11	I F	FGALINFORMATION 14


1. MODULE CLASSIFICATION INFORMATION


RV	Т	3.5	В	320240		7	W	С	B1
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.

1.	BRAND	RV – Riverdi
2.	PRODUCT TYPE	T – TFT Standard F – TFT Custom
3.	DISPLAY SIZE	3.5 - 3.5" 4.3 - 4.3" 5.7 - 5.7" 7.0 - 7.0"
4.	MODEL SERIAL NO.	B (A-Z)
5.	RESOLUTION	320240 – 320x240 px 480272 – 480x272 px 800480 – 800x480 px
6.	INTERFACE	T – TFT LCD, RGB L – TFT LCD, LVDS C – TFT + Controller
7.	FRAME	N – No Frame F – Mounting Frame
8.	BACKLIGHT TYPE	W – LED White
9.	TOUCH PANEL	N – No Touch Panel R – Resistive Touch Panel C – Capacitive Touch Panel
10.	VERSION	81 (00-99)

PIN	DESC			
1	VDD			
2	GND			
3	SPI_SCLK/ I2C_SCL			
4	MISO/I2C_SDA			
5	MOSI/I2C_SA0			
6	CS/I2C_SA1			
7	INT			
8	PD			
9	MODE			
10	AUDIO_OUT			
11	NC			
12	NC			
13	NC			
14	NC			
15	NC			
16	NC			
17	BLVDD			
18	BLVDD			
19	BLGND			
20	BLGND			

-6.17

1.10

A - K INTERNAL BACKLIGHT LED CONNECTION

NOTES:

1. DISPLAY TYPE: TFT, TRANSMISSIVE, NORMALLY WHITE

2. OPERATION VOLTAGE: VDD=3.3V 3. VIEWING DIRECTION: 12 O'CLOCK

4. IC CONTROLLER: FT801

5. OPERATING TEMP.: -20°C ~ 70°C 6. STORAGE TEMP... -30°C ~ 80°C

7. LED BACKLIGHT: 6-LED WHITE, BUILT-IN INVERTER

8. SURFACE LUMINANCE: 480 cd/m²

9. GENERAL TOLERANCE: ±0.2

10. RoHS COMPLIANT

11. BLGND internally connected to GND

CUSTOMER APVL			D	ATE	2014-1	2-23
DRAWN	sc	CALE		TITLE	<u> </u>	
DFTG CHK	1U	NIT		RVT3	3.5B32024	OCNWC81
ENGR CHK		r	ım	MODE	L	
APPROVAL	-(\bigcirc	\vdash		_	
	Riverdi our pixels behave			DWG N	10	PAGE 1/1

3. ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNIT
Supply Voltage For Logic (VDD pin)	VDD	0	3.7	V
Supply Voltage For Logic (BLVDD pins)	BLVDD	0	7.0	V
Input Voltage For Logic	VIN	GND	VDD	V
Operating Temperature	T _{OP}	-20	70	°C
Storage Temperature	T _{ST}	-30	80	°C
Humidity	RH	-	90%(Max 60°C)	RH

4. ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTES
Supply Voltage For Module	VDD	3.0	3.3	3.6	V	
Input Voltage for LED Inverter	BLVDD	2.8	3.3	5.5	V	
Input Current (Exclude LED Backlight)	IDD	-	65	82	mA	VDD = 3.3V
LED Backlight Current	IDDbacklight		150	187	mA	BLVDD=3.3V
LED Backlight Current	IDDbacklight		93	117	mA	BLVDD=5V
Total Input Current (Include LED	IDD _{total}	-	215	269	mA	BLVDD=3.3V
Backlight 100%)						
Input Voltage ' H ' level	V _{IH}	0.7VDD	-	VDD	V	
Input Voltage ' L ' level	VIL	0	-	0.2VDD	V	
LED Life Time	-	40000	50000	-	Hrs	Note 1

Note 1: The LED life time is defined as the module brightness decrease to 50% original brightness at Ta=25°C.

Note 2: Voltage Inverter ground (BLGND) is internally connected to GND

5. ELECTRO-OPTICAL CHARACTERISTICS

ITEM		SYMBOL	CONDITION	MIN	TYP	MAX	UNIT	REMARK	NOTE
Response Time		Tr+Tf	0.00	-	25	30	ms	Figure 1	4
Contrast R	Contrast Ratio		θ=0°	-	350	-		Figure 2	1
Luminance Un	iformity	δ WHITE	Ø=0° Ta=25°C	75	80	-	%	Figure 2	3
Surface Lumi	nance	Lv	1a=25 C	-	480	-	cd/m ²	Figure 2	2
			Ø = 90°	30	40	-	deg	Figure 3	
Minusia - Angla	Danas	θ	Ø = 270°	50	60	-	deg	Figure 3	
Viewing Angle	Range	9	Ø = 0°	50	60	-	deg	Figure 3	6
			Ø = 180°	50	60	-	deg	Figure 3	
	Red	x		0.574	0.624	0.674			
	Neu	У		0.318	0.368	0.418			
	Green	х	θ=0°	0.300	0.350	0.400			
CIE (x, y)		У	Ø=0°	0.500	0.550	0.600	Fi	5	
Chromaticity	Blue	х	<i>₩</i> -0 Та=25°С	0.093	0.143	0.193	''	igure 2	3
		У	14-25 C	0.069	0.119	0.169			
	White	х		0.260	0.310	0.360			
		У		0.283	0.333	0.383			
NTSC	-	-	-	-	50	-		%	-

LCD TFT Datasheet Rev.1.3 RVT3.5B320240CNWC81

Note 1. Contrast Ratio(CR) is defined mathematically as below, for more information see Figure 1.

Note 2. Surface luminance is the LCD surface from the surface with all pixels displaying white. For more information see Figure 2.

Lv = Average Surface Luminance with all white pixels (P1, P2, P3, P4, P5)

Note 3. The uniformity in surface luminance δ WHITE is determined by measuring luminance at each test position 1 through 5, and then dividing the maximum luminance of 5 points luminance by minimum luminance of 5 points luminance. For more information see Figure 2.

$$\delta \, WHITE \, = \, \frac{Minimum \, Surface \, Luminance \, with \, all \, white \, pixels \, (P1, P2, P3, P4, P5)}{Maximum \, Surface \, Luminance \, with \, all \, white \, pixels \, (P1, P2, P3, P4, P5)}$$

Note 4. Response time is the time required for the display to transition from white to black (Rise Time, Tr) and from black to white (Decay Time, Tf). For additional information see Figure 1. The test equipment is Autronic-Melchers's ConoScope series.

Note 5. CIE (x, y) chromaticity, the x, y value is determined by measuring luminance at each test position 1 through 5, and then make average value.

Note 6. Viewing angle is the angle at which the contrast ratio is greater than 2. For TFT module the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see Figure 3.

Note 7. For viewing angle and response time testing, the testing data is based on Autronic-Melchers's ConoScope series. Instruments for Contrast Ratio, Surface Luminance, Luminance Uniformity, CIE the test data is based on TOPCON's BM-5 photo detector.

Note 8. For TFT module, gray scale reverse occurs in the direction of panel viewing angle.

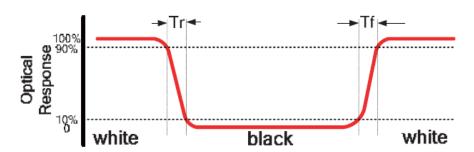


Figure 1. The definition of response time

LCD TFT Datasheet Rev.1.3 RVT3.5B320240CNWC81

Figure 2. Measuring method for Contrast ratio, surface luminance, Luminance uniformity, CIE (x, y) chromaticity

A: 5 mm B:5 mm H,V: Active Area

Light spot size ∅=5mm, 500mm distance from the

measurement instrument is TOPCON's luminance

LCD surface to detector lens meter BM-5

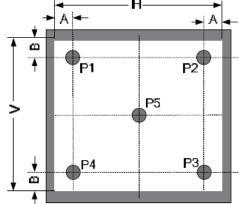
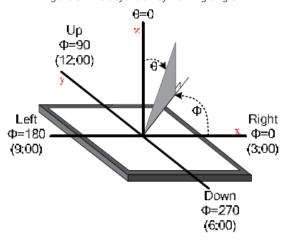
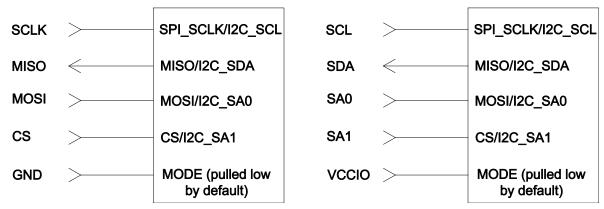



Figure 3. The definition of viewing angle

6. INTERFACE DESCRIPTION

PIN NO.	SYMBOL	DESCRIPTION
1	VDD	Power Supply
2	GND	Ground
3	SPI_SCLK/	SPI SCK Signal / I2C SCL Signal, Pulled Up Inside Display by 47k
	I2C_SCL	Resistor
4	MISO/	SPI MISO Signal / I2C SDA Signal, Pulled Up Inside Display by
	I2C_SDA	47k Resistor
5	MOSI/	SPI MOSI Signal / I2C Slave Address Bit 0, Pulled Up Inside
	I2C_SA0	Display by 47k Resistor
6	CS/I2C_SA1	SPI Chip Select Signal / I2C Slave Address Bit 1, Pulled Up Inside
		Display by 47k Resistor
7	INT	Interrupt Signal, Active Low, Pulled Up Inside Display by 47k
		Resistor
8	PD	Power Down Signal, Active Low, Pulled Up Inside Display by 47k
		Resistor
9	MODE	Host Interface SPI(Pull Low) or I2C(Pull Up) Mode Select
		Input, Internally 10k Pull DOWN
10	AUDIO_OUT	Audio Out Signal
11	NC	Not Connected
12	NC	Not Connected
13	NC	Not Connected

14	NC	Not Connected
15	NC	Not Connected
16	NC	Not Connected
17	BLVDD	Backlight Power Supply, Can Be Connected to VDD
18	BLVDD	Backlight Power Supply, Can Be Connected to VDD
19	BLGND	Backlight Ground, Internally connected to GND
20	BLGND	Backlight Ground, Internally connected to GND


7. FT801 CONTROLLER SPECIFICATIONS

FT801 or EVE (Embedded Video Engine) simplifies the system architecture for advanced human machine interfaces (HMIs) by providing functionality for display, audio, and touch as well as an object oriented architecture approach that extends from display creation to the rendering of the graphics.

7.1. Serial host interface

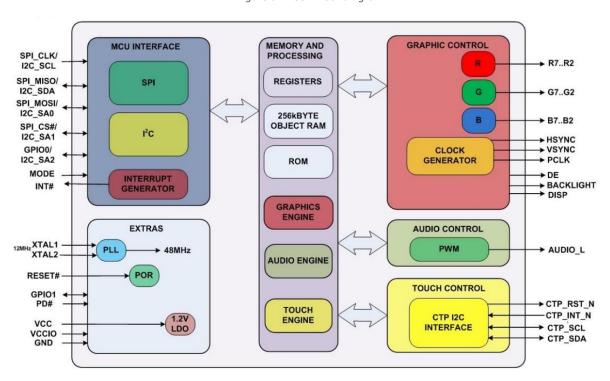
Figure 4.SPI interface connection

Figure 5.12C interface connection

SPI Interface – the SPI slave interface operates up to 30MHz.

Only SPI mode 0 is supported. The SPI interface is selected by default (MODE pin is internally pulled low by 47k resistor).

I²C Interface – the I²C slave interface operates up to 3.4MHz, supporting standard-mode, fast-mode, fast-mode plus and high-speed mode.


The I²C device address is configurable between 20h to 23h depending on the I²C_SA[1:0] pin setting, i.e. the 7-bit I²C slave address is 0b'01000A1A0.

The I²C interface is selected when the MODE pin is tied to VDDIO.

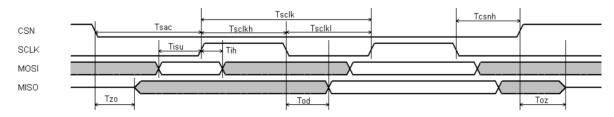
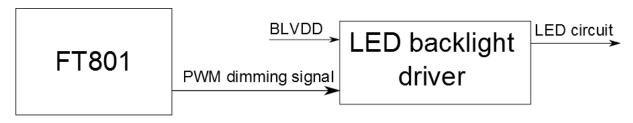

7.2. Block Diagram

Figure 6. FT801 Block diagram

7.3. Host interface SPI mode 0

Figure 7. SPI timing diagram



For more information about FT801 controller please go to official FT801 Datasheet. http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS FT801.pdf

7.4. Backlight driver block diagram

Backlight enable signal is internally connected to FT801 Backlight control pin. This pin is controlled by two FT801's registers. One of them specifies the PWM output frequency, second one specifies the duty cycle. Refer to FT801 datasheet for more information.

Figure 8. Backlight driver block diagram

8. LCD TIMING CHARACTERISTICS

8.1. Timing Chart

Timing parameter (VDD=3.3V, GND=0V, Ta=25°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
CLK Clock Time	T _{clk}	1/Max(F _{CLK})	-	1/Min(F _{CLK})	ns	-
CLK Pulse Duty	T _{chw}	40	50	60	%	T _{CLK}
HSYNC to CLK	T _{hc}	-	-	1	CLK	-
HSYNC Width	T _{hwh}	1	-	-	CLK	-
VSYNC Width	T _{vwh}	1	-	-	ns	-
HSYNC Period Time	Th	60	63.56	67	ns	-
VSYNC Set-up Time	T _{vst}	12	-	-	ns	-
VSYNC Hold Time	T _{vhd}	12	-	-	ns	-
HSYNC Setup Time	T _{hst}	12	-	-	ns	-
HSYNC Hold Time	T _{hhd}	12	-	-	ns	-
Data Set-up Time	T _{dsu}	12	-	-	ns	D00~D23 to CLK
Data Hold Time	T _{dhd}	12	-	-	ns	D00~D23 to CLK
DEN Set-up Time	T _{esu}	12	-	-	ns	DEN to CLK

Figure 9. DE mode timing diagram

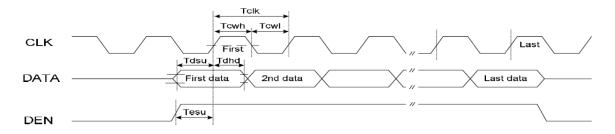
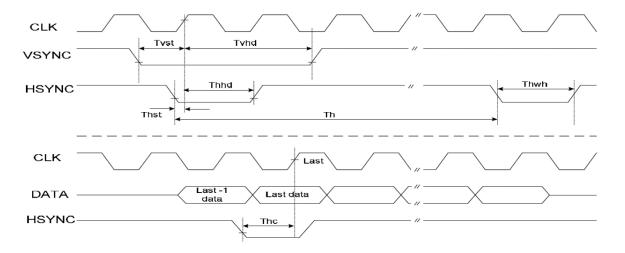
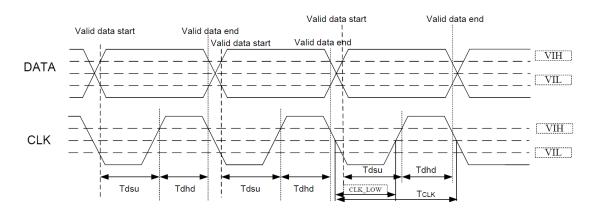
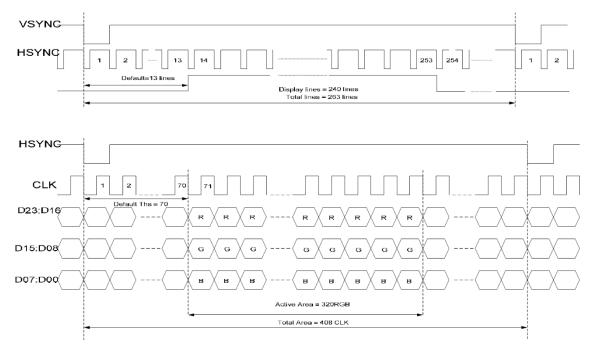


Figure 10. SYNC mode timing diagram

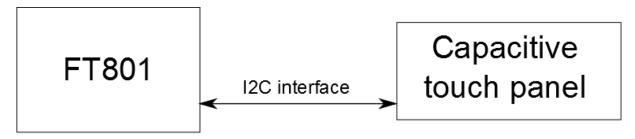




Figure 11. Timing diagram

8.2. 24 Bit RGB Mode for 320 x RGB x 240

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
CLK Frequency	F _{clk}	7.0	8.0	9.0	MHz	VDD=3.0V~3.6V
CLK Cycle Time	T _{clk}	143	125	111	ns	-
CLK Pulse Duty	T _{cwh}	40	50	60	%	-
Time that HSYNC to	T _{hs}					DDLY=70
1st Data Input		40	70	255	CLK	Offset=0(fixed)
(NTSC)						

Figure 12. 24 bit RGB SYNC mode timing



9. CAPACITIVE TOUCH SCREEN PANEL SPECIFICATIONS

Capacitive Touch Panel is directly connected to FT801 module. Therefore communication with Capacitive touch panel is simplified to read registers of FT801.

Figure 13. Capacitive Touch Panel Connection

9.1. Mechanical characteristics

DESCRIPTION	INL SPECIFICATION	REMARK
Touch Panel Size	3.5 inch	
Outline Dimension (OD)	76.75 mm x 63.00mm	Cover Lens Outline
Product Thickness	1.26mm	
Glass Thickness	0.7 mm	
Ink View Area	72.00mm x 54.50mm	
Sensor Active Area	73.25mm x 55.90mm	
Input Method	5 Finger	
Activation Force	Touch	
Surface Hardness	≥7H	

9.2. Electrical characteristics

DESCRIPTION	SPECIFICATION	
Operating Voltage	DC 2.8~3.6V	
Power Consumption (IDD)	Active Mode	10~18mA
	Sleep Mode	30~50μΑ
Interface	I ² C	
Linearity	<1.5%	
Controller	FT5206	
I2C address	0x38 (7 bit address)	
Resolution	896*640	

10. RELIABILITY TEST

NO.	TEST ITEM	TEST CONDITION	INSPECTION AFTER TEST
1	High Temperature Storage	80±2°C/240 hours	
2	Low Temperature Storage	-30±2°C/240 hours	
3	High Temperature Operating	70±2°C/240 hours	
4	Low Temperature Operating	-20±2°C/240 hours	
5	Temperature Cycle	-30±2°C~25~70±2°C × 30 cycles	
6	Damp Proof Test	60°C ±5°C × 90%RH/160 hours	
7	Vibration Test	Frequency 10Hz~55Hz Stroke: 1.5mm Sweep: 10Hz~55Hz~10Hz 2 hours For each direction of X, Y, Z (6 hours for total)	Inspection after 2~4 hours storage at room temperature, the sample shall be free from defects:
8	Mechanical Shock	60G 6ms, \pm X, \pm Y, \pm Z 3 times for each direction	Air bubble in the LCD Seal leak
9	Packing Drop Test	Height: 80 cm 1 corner, 3 edges, 6 surfaces	3. Non-display 4. Missing segments
10	Package Vibration Test	Random vibration: 0.015G ² /Hz from 5-200Hz -6dB/Octave from 200-500Hz 2 hours for each direction of X, Y, Z (6 hours for total)	 5. Glass crack 6. Current I_{dd} is twice higher than initial value 7. The surface shall be free from
11	Electrostatic Discharge	Air: ± 8 KV 150 pF/330 Ω 5 times Contact: ± 4 KV 150 pF/330 Ω 5 times	damage 8. Linearity must be no more than
12	Hitting Test	1,000,000 times in the same point Hitting pad: tip R3.75mm, Silicone rubber, Hardness: 40deg. Load: 2.45N Hitting speed: Twice/sec Electric load: none Test area should be at 1.8mm inside of insulation.	1.5% by the linearity tester9. The Electric characteristics requirements shall be satisfied
13	Pen Sliding Durability Test	100,000 times minimum Hitting pad: tip R0.8mm plastic pen Load: 1.47N Sliding speed: 60 mm/sec Electric load: none Test area should be at 1.8mm inside of insulation.	

Remark:

- 1. The test samples should be applied to only one test item.
- 2. Sample size for each test item is 5~10pcs.
- 3. For Damp Proof Test, Pure water(Resistance
- 10M Ω) should be used.
- 4. In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.
- 5. EL evaluation should be excepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.
- 6. Failure Judgment Criterion: Basic Specification, Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.

11.1 FGAL INFORMATION

Riverdi makes no warranty, either expressed or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose. Information about device are the property of Riverdi and may be the subject of patents pending or granted. It is not allowed to copy or disclosed this document without prior written permission.

Riverdi endeavors to ensure that the all contained information in this document are correct but does not accept liability for any error or omission. Riverdi products are in developing process and published information may be not up to date. Riverdi reserves the right to update and makes changes to Specifications or written material without prior notice at any time. It is important to check the current position with Riverdi.

Images and graphics used in this document are only for illustrative the purpose. All images and graphics are possible to be displayed on the range products of Riverdi, however the quality may vary. Riverdi is no liable to the buyer or to any third part for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) relating to any product, service provided or to be provided by Riverdi, or the use or inability to use the same, even if Riverdi has been advised of the possibility of such damages.

Riverdi products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). Riverdi and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities. Using Riverdi products and devices in 'High Risk Activities' and in any other application is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Riverdi from any and all damages, claims or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Riverdi intellectual property rights.

